
WorkStream:
Silicon Interface
Design

Subrata Banik (Google)
Christian Walter (9elements)

OPEN
SOURCE
FIRMWARE
— FOUNDATION

Problem Statement
- Every SoC vendor has its own interface.

- Migrating the project across different SoC vendors is

challenging due to lack of unified specification and

reusability. Example: Great reusability of the SoC

interface between Intel and AMD was using FSP.

- Even landing a new SoC platform means a lot of

work. Example: UEFI is the default choice over

coreboot due to lack of specification.

- Unable to provide unified user experience across

different SoC platforms even with the same Operating

System.

- Lack of framework that qualifies a system firmware

healthy based on examining the underlying interface.

Intel SoC

FSP

coreboot

AMD SoC

AGESA

coreboot

QC SoC

QC Libs

coreboot

coreboot needs to keep various drivers and libraries to
support different SoC interface

interface

https://www.osfc.io/2022/talks/the-thing-around-your-system-firmware/

https://www.osfc.io/2022/talks/the-thing-around-your-system-firmware/

Objective

Create an Open Source friendly Silicon Reference Code Interface, applicable for
all CPU architecture. The current model of Silicon Reference code is limited to
the proprietary blobs used for the platform initialization. It increases redundancy
while working with different SoCs, being a bottleneck to the SoC vendors for
platform enablement, and expanding the usage of the close source increases the
common mistakes and pitfalls across all silicon reference code.

Scope

To accelerate the platform enablement using Open Source Firmware (OSF)
development approach, where working with different silicon reference codes is
seamless, easy to leverage among existing designs without the need to start the
designing/development from the scratch.

Furthermore, we want to define the trust using a transparent development
approach where engagement is wider, firmware development is easy, increase
reusability, being royalty free and managed by the open source community.

Agenda #1 - Design Unified Silicon Interface (USI)

Intel SoC

FSP

coreboot

AMD SoC

AGESA

QC SoC

QC Libs

coreboot to have only one generic driver to communicate
with SoC interface

interface

Unified Silicon Interface (USI)

Pre-Memory Memory Init Security

- To design a unified interface for communicating

with silicon reference code.

- Simple, Reduced, Generic and UEFI-neutral

API-based communication model¹.

 > Pre-Memory: To perform any operation(s) before

DIMM initialization.

 > Post-Memory: To perform any operation(s) after

DIMM initialization.

 > Security: To perform any SoC recommended

operation(s) before loading payload.

- Shared Memory Type IPC for exchanging² the

information between USI and silicon reference layer.

 ¹ Need to have more granular details about this API communication

 ² Need to have more detailed information exchange details.

Agenda #2 - Open Source Silicon Reference Code

- Due to the restricted nature of Silicon Reference

Code, the code visibility is zero, the growth in it is

untraceable and as expected it's beyond the

community control.

- Improve the state of OSF Development using Open

Source Silicon Reference Code¹.

- Open Source development provides visibility where

the community can even contribute into product

development and bug fixes (without any additional

cost).

- Provide great transparency where the goodness

reaches to everyone without any discrimination. It

might help the future product development.

Closed Source

Around ~55% of SPI Flash
layout is occupied by the
closed source blobs (silicon
ref code aka init module,
pre-reset blobs etc.)

Open Source

Remaining ~45% is
open source boot
firmware aka
coreboot. None of
the silicon reference
code has open
source visibility.

SPI Flash
Layout*

¹https://blog.osfw.foundation/osf-intel-reduce-fsp-boundary/

Agenda #3 - Design Test Framework around USI

Intel SoC

FSP

coreboot

AMD SoC

AGESA

QC SoC

QC Libs

Unified Silicon Interface (USI)

Pre-Memory Memory Init Security

- The lack of a test framework that defines the completeness of

the silicon programming can be costly if vulnerabilities are

found during post production.

- Difficult for the product team to pay attention towards

meeting firmware compliance . A defined standard test

procedure can be used to certify the firmware completeness

and robustness. For example: CTS for Android, WHCK for

Windows, SCT for UEFI are meant to define that trust in the

product quality.

- Due to the lack of a unified test framework, each product

designer needs to define their own which results in redundancy

and increased product cost.

A Test Framework around USI would help to bridge all these

gaps and define a generic methodology to quality the open

source system firmware.

Test
Framework

I’ve never scored a goal in my life
without getting a pass from someone
else.

~ Abby Wambach

Please join hands with us to make this workstream a successful one.

Find more details here about the workstream:
https://opensourcefirmware.foundation/workstreams/silicon-interface-design/#

https://opensourcefirmware.foundation/workstreams/silicon-interface-design/#

